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Abstract We show how certain determinants of hyperelliptic periods can be com-
puted using a generalized arithmetic-geometric mean iteration, whose initialisation
parameters depend only on the position of the ramification points. Special attention
is paid to the explicit form of this dependence and the signs occurring in the real
domain.
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1 Introduction

The study of hyperelliptic integrals
∫

R
(
x,

√
f (x)

)
dx

has a long and rich history and played a pivotal role in the development of the theory
of Riemann surfaces and the algebraic geometry of curves. In this paper we consider
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the classical topic of real hyperelliptic periods such as

Ij (a1, . . . , ad) :=
∫ aj+1

aj

dx√|(x − a1) · · · (x − ad)| ,

where a1, . . . , ad are pairwise distinct real numbers. We will always assume that the
branch points ai are ordered: a1 < · · · < ad . For d = 2, these integrals are elementary:

∫ b

a

dx√
(x − a)(b − x)

= π.

For d = 3 and d = 4 they were studied by Lagrange in 1784 (see [15, p. 272]) and
later by Gauss (see [11, pp. 352–353]), who related them to the arithmetic–geometric
mean (agm). For a wonderful description of Gauss’ theory, we refer to [5]. Recall
that the agm of two positive real numbers u and v is defined using the sequences (un)

and (vn) defined recursively by un+1 := 1
2 (un +vn) and vn+1 := √

unvn starting with
u0 := u and v0 := v. It is easy to prove that |un+1 −vn+1| ≤ 1

2 |un−vn| for all n, hence
un and vn converge to a common limit. This is the agm of u and v, which we denote
by M(u,v). We will see later in a more general setting the well-known fact that the
convergence is quadratic, hence the number of correct digits roughly doubles on each
iteration step. (We refer to [3] for a systematic treatment of compound means like the
agm.)

Lagrange and Gauss proved that

I1(a1, a2, a3) = π

M(
√

a3 − a1,
√

a3 − a2)

and

I2(a1, a2, a3) = π

M(
√

a3 − a1,
√

a2 − a1)
.

For d = 4 they showed that

I1(a1, a2, a3, a4) = I3(a1, a2, a3, a4) = π

M(
√

a3,1a4,2,
√

a3,2a4,1)

and

I2(a1, a2, a3, a4) = π

M(
√

a3,1a4,2,
√

a2,1a4,3)
,

where ai,j := ai − aj . (Note that ai,j > 0 if i > j .) For d = 5 and d = 6, there exists
a similar iterative algorithm due to Richelot (see [4, 20] for a modern account). The
cases d = 7 and d = 8 were considered in the more general and abstract setting of
Jacobians of genus 3 in [7, 16].

In this paper we deal with arbitrary d and we give explicit iterative algorithms,
extending the formulas by Lagrange and Gauss. To explain our result, we look at the
hyperelliptic curve

C: y2 = (x − a1) · · · (x − ad).
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C is a compact Riemann surface of genus g, which is related to d by d = 2g + 1 if
d is odd and d = 2g + 2 if d is even. This Riemann surface is obtained by gluing two
copies of C ∪ {∞} minus the “odd” cuts [a1, a2], [a3, a4], . . . , [a2g+1, a2g+2], where
we set a2g+2 = ∞ if d = 2g+1. The following picture illustrates the result for g = 3,
i.e. d = 7 or d = 8:

We see that the cases d = 2g +1 and d = 2g +2 are essentially equivalent. In fact,
if d is even then all branch points are finite, whereas ∞ is a branch point for odd d .
Any Möbius transformation of the form

x �→ x̃ = cx + b

x − ad

, x �→ x̃ = ad x̃ + b

x̃ − c

makes x = ad correspond to x̃ = ∞. Hence it suffices to consider the case where d is
even (or d is odd). For example, for d = 4 the transformation

x̃ = a4,2(x − a1)

a2,1(a4 − x)

identifies the quartic curve y2 = (x − a1)(x − a2)(x − a3)(x − a4) with the cubic
ỹ2 = x̃(x̃ −1)(x̃ −λ), where λ := a3,1a4,2

a2,1a4,3
> 1. Note that x = a1, a2, a3, a4 correspond

to x̃ = 0,1, λ,∞, respectively. We find

I1(a1, a2, a3, a4) = 1√
a2,1a4,3

∫ 1

0

dx̃√
x̃(x̃ − 1)(x̃ − λ)

and

I2(a1, a2, a3, a4) = 1√
a2,1a4,3

∫ λ

1

dx̃√−x̃(x̃ − 1)(x̃ − λ)
.

Using this transformation one sees that the formulas mentioned before for d = 3 and
d = 4 are equivalent.
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More generally, we will consider integrals

Ij,k(a1, . . . , ad) :=
∫ aj+1

aj

xk−1 dx√|(x − a1) · · · (x − ad)|
for k ≥ 1. These are closely related to the period matrix of the hyperelliptic curve C.
In fact, Riemann showed that

ψk := xk−1 dx

2y
(k = 1, . . . , g)

form a basis for the vector space of holomorphic 1-forms on C (see for example
[12, p. 255]). We choose the standard symplectic basis A1, . . . ,Ag,B1, . . . ,Bg for
the homology of C (see [19, p. 76]). We illustrate this for g = 3 in the complex
plane:

Note that y has a single valued analytic continuation on these cycles. On the Riemann
surface the cycles look like this:

If we define Ag+1 in the obvious way, we see that
∑g+1

j=1 Aj is homologous to 0,
whence

g+1∑
j=1

(−1)j I2j−1,k = 0
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for k = 1, . . . , g. The alternating sign is explained by the fact that the analytic con-
tinuation of

√
(x − a1) · · · (x − ad) changes sign between two cuts.

We now define two g × g-matrices (Ak,j ) and B = (Bk,j ), where 1 ≤ k, j ≤ g.
If d is odd, then (x − a1) · · · (x − ad) is positive on the intervals [a2j−1, a2j ] corre-
sponding to the cycles Aj , hence

∫
Aj

ψk = (−1)j+1I2j−1,k =: Ak,j .

If d is even, then (x − a1) · · · (x − ad) is positive on the intervals corresponding to
the cycles Bj . In fact,

∫
Bj

ψk =
g∑

�=j

(−1)�+1I2�,k =: Bk,j .

Similarly we deal with the imaginary periods and we find that C has period matrix

(∫
Aj

ψk

∫
Bj

ψk

)
=

{
(A iB) if d is odd,

(−iA B) if d is even,

where A and B are the real g × g-matrices (Ak,j ) and B = (Bk,j ), respectively. In
each case, the normalized period matrix is (1, iΩ), where

Ω := A−1B ∈ Rg×g.

Riemann’s famous period relations imply that Ω is symmetric and positive definite
(see [12, pp. 231/232]). We will check in Proposition 1 below that det(A) and det(B)

do indeed have the same sign, namely (−1)
g/2�. In fact, we shall show that

det(A) = (−1)
g/2� ·
∫ a2

x1=a1

· · ·
∫ a2g

xg=a2g−1

∏
1≤k<j≤g

(xj − xk)dx1 · · · dxg√|f (x1) · · ·f (xg)|

and

det(B) = (−1)
g/2� ·
∫ a3

x1=a2

· · ·
∫ a2g+1

xg=a2g

∏
1≤k<j≤g

(xj − xk)dx1 · · · dxg√|f (x1) · · ·f (xg)|
.

The main result of this paper shows how to compute det(A), det(B) and certain
other minors using a generalized arithmetic–geometric mean. For genus g we will
have to take the generalized agm of 2g numbers. For example, for d = 5 one finds

det(A) = − π2

M(w1,w2,w3,w4)
,

where w1 := √
a3,1a5,4a5,2a4,2, w2 := √

a4,1a5,3a5,2a3,2, w3 := √
a3,2a5,4a5,1a4,1

and w4 := √
a4,2a5,3a5,1a3,1 and where the generalized agm M(a,b, c, d) of four
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positive real numbers a, b, c, d is defined as the common limit of the sequences

an+1 := 1

4
(an + bn + cn + dn),

bn+1 := 1

2

(√
anbn + √

cndn

)
,

cn+1 := 1

2

(√
ancn + √

bndn

)
,

dn+1 := 1

2

(√
andn + √

bncn

)

with a0 := a, b0 := b, c0 := c and d0 := d . This generalized agm was introduced by
Borchardt in [2] and studied more recently in [8, 9, 14], also for complex arguments.
Similarly, setting ai,j,k := ai,j ai,kaj,k , we have

det(B) = − π2

M(
√

a4,2a5,3,1,
√

a5,2a4,3,1,
√

a4,3a5,2,1,
√

a5,3a4,2,1)
.

We can also compute

det

(
A0,1 B0,2
A1,1 B1,2

)
= − π2

M(
√

a4,1a5,3,2,
√

a4,2a5,3,1,
√

a5,1a4,3,2,
√

a5,2a4,3,1)

and

det

(
A0,2 B0,1
A1,2 B1,1

)
= π2

M(
√

a3,2a5,4,1,
√

a5,3a4,2,1,
√

a5,2a4,3,1,
√

a5,4a3,2,1)
.

We leave it to the reader to find the pattern. (Draw a picture of the branch points and
the cycles A1,A2,B1,B2 in the complex plane!) However, we cannot compute the

remaining two minors det
(

A0,1 B0,1
A1,1 B1,1

)
and det

(
A0,2 B0,2
A1,2 B1,2

)
this way. Note that these two

minors are “non-Lagrangian” in the sense that the intersection numbers A1 · B1 and
A2 · B2 do not vanish.

As mentioned above, one can use a Möbius transformation to deduce the corre-
sponding results for d = 6. One finds

det(A) = − π2

M(
√

a6,3,1a5,4,2,
√

a6,4,1a5,3,2,
√

a6,3,2a5,4,1,
√

a6,4,2a5,3,1)
.

Note that the corresponding result for d = 5 is obtained by simply omitting the in-
dex “6”. The same holds for the other minors, e.g.

det(B) = − π2

M(
√

a6,4,2a5,3,1,
√

a6,5,2a4,3,1,
√

a6,4,3a5,2,1,
√

a6,5,3a4,2,1)
.

Since the generalized agm converges quadratically, it provides an efficient way
to compute the corresponding minors of the period matrix of the hyperelliptic curve
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y2 = (x − a1) · · · (x − a2g+2). Conversely, one might ask which generalized agm’s
appear this way. Since 2g > 2g + 1 for g ≥ 3 it is clear that most 2g-tuples do not
arise this way. For g = 2, d = 5 one has to deal with the map (a1, a2, a3, a4, a5) �→
(x, y, z, t), where

x := w2
1 = (a3 − a1)(a5 − a4)(a5 − a2)(a4 − a2),

y := w2
2 = (a4 − a1)(a5 − a3)(a5 − a2)(a3 − a2),

z := w2
3 = (a3 − a2)(a5 − a4)(a5 − a1)(a4 − a1),

t := w2
4 = (a4 − a2)(a5 − a3)(a5 − a1)(a3 − a1).

As only differences of aj ’s appear, we may as well put a5 = 0 and we end up with
a map Ψ : C4 → C4. The geometry of this map is quite involved: it is not surjective,
as one readily checks that (1,0,0,0) is not in the image. On the other hand the map
is dominant and a general 4-tuple like (1,2,3,4) has 16 preimages. The discriminant
of the map Ψ has the form yzth(x, y, z, t), where h(x, y, z, t) is the homogeneous
quartic polynomial

(
(x + y + z + t)2 − 4(xy + xz + xt + yz + yt + zt)

)2 − 64xyzt

whose vanishing describes a Steiner roman surface in projective three-space. All
these facts can be checked with a computer algebra system like SINGULAR. The
map Ψ is also considered in [17]. (Unfortunately, however, Theorem 1 in [17] and
the formulas on p. 275 of [17] are wrong.)

The structure of this paper is as follows. First, in Sect. 2, we give two classi-
cal proofs for the case g = 1: one using a miraculous substitution and another us-
ing theta constants. We explain the substitution in terms of isogenies and apply
this to compute elliptic periods in the “rhombic case”, i.e. integrals of the form∫ ∞
p

dx/
√

(x − p)(x2 + px + q) with p2 − 4q < 0. In the third section we will gen-
eralize the second proof to arbitrary genus g. Section four contains a numerical ex-
ample for genus 3. In the final section we deal with the convergence properties of the
generalized agm.

2 Elliptic case: g = 1

An elliptic curve is a curve of genus 1 and the corresponding integrals are called el-
liptic periods. They are related to the length of an ellipse, which explains the adjective
‘elliptic’ (see for instance [1]).

2.1 Two classical approaches

We will prove the formulas for the elliptic periods twice: first using a clever substitu-
tion and second using theta constants. Both ideas are due to Gauss (see [5]). We start
with an elliptic integral written in a slightly different form.
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Theorem 1 (Lagrange (1784), Gauss (1799)) If a, b > 0 then

∫ 1
2 π

0

dϑ√
a2 cos2(ϑ) + b2 sin2(ϑ)

=
1
2π

M(a,b)
.

Proof The substitution sinϑ = 2a sinϕ

(a+b)+(a−b) sin2 ϕ
yields I (a, b) = I (a′, b′), where

a′ := 1
2 (a + b) and b′ := √

ab. Hence I (a, b) = I (a′, b′) = I (a′′, b′′) = · · · =
I (M,M) = (2πM)−1, since the integrand converges uniformly to the constant func-
tion M . �

Corollary 1 If a1 < a2 < a3 then
∫ a2

a1

dx√
(x − a1)(x − a2)(x − a3)

= π

M(
√

a3 − a1,
√

a3 − a2)
.

Proof Substitution of x = a1 + (a2 − a1) sin2(ϑ) reduces this to the theorem. �

Below, we will give an explanation for the remarkable substitution sinϑ =
2a sinϕ

(a+b)+(a−b) sin2 ϕ
used in the proof above. Our generalization to the hyperelliptic case

(i.e. g > 1) starts from another line of attack using theta functions, which we will
now explain. We start with the elliptic curve

E: y2 = (x − a1)(x − a2)(x − a3)

satisfying a1 < a2 < a3. Its period lattice is generated by ω1 := I1(a1, a2, a3) and
ω2 := iI2(a1, a2, a3). We set τ := ω2/ω1 and q := eπiτ . Note that 0 < q < 1. We
define the theta constants

ϑ0(τ ) :=
∞∑

n=−∞
qn2

, ϑ1(τ ) :=
∞∑

n=−∞
(−1)nqn2

.

Note that these constants are real numbers. Then one can show that

πϑ0(τ )2 = ω1
√

a3,1, πϑ1(τ )2 = ω1
√

a3,2

(see [4, p. 8]). These identities were generalized to arbitrary genus by Thomae in [21]
and we will refer to them as Thomae formulas. Furthermore, using the q-expansions
above one easily checks that

ϑ2
0 (2τ) = 1

2

(
ϑ2

0 (τ ) + ϑ2
1 (τ )

)
,

ϑ2
1 (2τ) = ϑ0(τ )ϑ1(τ ).

Since ϑ0(τ ) is positive for τ on the positive imaginary axis, the second formula shows
that the same holds for ϑ1(τ ). Now we claim that

M
(
ϑ2

0 (τ ),ϑ2
1 (τ )

) = 1.
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Indeed, applying the iterative definition of the agm starting with a0 = ϑ2
0 (τ ) and

b0 = ϑ2
1 (τ ), we find

a1 = 1

2
(a0 + b0) = ϑ2

0 (2τ) and b1 = √
a0b0 = ϑ2

1 (2τ).

Iteration leads to

an = ϑ2
0

(
2nτ

)
and bn = ϑ2

1

(
2nτ

)
.

It remains to note that q tends to 0 as n tends to infinity, hence an and bn tend to 1.
Together with the Thomae formulas, we find

π = M
(
πϑ0(τ )2,πϑ1(τ )2) = M

(
ω1

√
a3,1,ω1

√
a3,2

) = ω1M
(√

a3,1,
√

a3,2
)
.

2.2 An isogeny of degree 2

Recall that E ∼= C/Λ, where Λ = Z ⊕ τZ. Replacing τ with 2τ corresponds to re-
placing E with E′ := C/Λ′, where Λ′ := Z ⊕ 2τZ. The inclusion Λ′ ⊂ Λ defines an
isogeny E′ → E of degree 2. We will write down this isogeny explicitly in terms of
the coefficients a1, a2, a3 and we will see that this explains the miraculous substitu-
tion sinϑ = 2u sinϕ

(u+v)+(u−v) sin2 ϕ
.

Gauss used this substitution to show that

I (u, v) :=
∫ 1

2 π

0

(
u2 cos2(ϑ) + v2 sin2(ϑ)

)−1/2 dϑ

is invariant under

(u, v) �→ (
u′, v′) :=

(
1

2
(u + v),

√
uv

)
.

To compare this to our elliptic integrals, we recall that

I1(a1, a2, a3) =
∫ a2

a1

dx√
(x − a1)(x − a2)(x − a3)

= 2I (u, v),

where u = √
a3,1 and v = √

a3,2. If we assume that a1 + a2 + a3 = 0 and set

a′
1 := 1

3

(−2u′2 + v′2) = −1

2
a3,

a′
2 := 1

3

(
u′2 − 2v′2) = 1

4
a3 − 1

2
√

a3,1a3,2,

a′
3 := 1

3

(
u′2 + v′2) = 1

4
a3 + 1

2
√

a3,1a3,2,

then a′
1 +a′

2 +a′
3 = 0, a′

1 < a′
2 < a′

3 and (u′, v′) = (
√

a′
3,1,

√
a′

3,2). Hence the equality

I (u, v) = I (u′, v′) is equivalent to I1(a1, a2, a3) = I1(a
′
1, a

′
2, a

′
3). One can check that
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under the correspondence of Corollary 1, the substitution sinϑ = 2u sinϕ

(u+v)+(u−v) sin2 ϕ
is

equivalent to

(
x′, y′) �→ (x, y) =

(
x′ + a′

3,1a
′
3,2

x′ − a′
1
,

(
1 − a′

3,1a
′
3,2

(x′ − a′
1)

2

)
y′

)

from E′ : y′2 = (x − a′
1)(x − a′

2)(x − a′
3) to E : y2 = (x − a1)(x − a2)(x − a3). One

can check that

dx√
(x − a1)(x − a2)(x − a3)

= dx′√
(x′ − a′

1)(x
′ − a′

2)(x
′ − a′

3)
,

whence I1(a1, a2, a3) = I1(a
′
1, a

′
2, a

′
3). The same substitution can be used to show

that I2(a1, a2, a3) = 1
2I2(a

′
1, a

′
2, a

′
3).

Note that (a′
1,0) is mapped to the point at infinity, whereas (a′

2,0) and (a′
3,0)

are mapped to (a3,0). In fact, E′ → E is an isogeny of degree 2 that mods out
the 2-torsion point (a′

1,0) of E′. In terms of the period lattices we find that the
imaginary periods of E′ are twice the imaginary periods of E, whereas the real
periods coincide. So we see that the doubling of τ corresponds to the substitution
sinϑ = 2u sinϕ

(u+v)+(u−v) sin2 ϕ
.

2.3 Application to rhombic elliptic periods

We can use these ideas to compute rhombic elliptic periods, i.e. integrals of the form
∫ ∞

p

dx√
(x − p)(x2 + px + q)

with Δ := p2 − 4q < 0.

Theorem 2 If p2 − 4q < 0 then a1 = p − 2
√

2p2 + q , a2 = −2p, a3 = p +
2
√

2p2 + q satisfy a1 < a2 < a3 and

∫ ∞

p

dx′√
(x′ − p)(x′2 + px′ + q)

= 2
∫ a2

a1

dx√
(x − a1)(x − a2)(x − a3)

= 2π

M(
√

a2,1,
√

a3,2)
.

Proof The inequalities a1 < a2 and a2 < a3 are clear. The idea is to mod out the real
2-torsion point (p,0) of

E′: y2 = (x − p)
(
x2 + px + q

)
.

Note that the period lattice of E′ is rhombic, i.e. if ω1 and ω2 are the first periods on
the positive real and imaginary axis, respectively, then the period lattice Λ′ is gener-
ated by ω1 and 1

2 (ω1 + ω2). Hence Λ := Zω1 ⊕ Zω2 is a sublattice of index 2. The
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corresponding elliptic curve is E := E′/(p,0). Since its period lattice is rectangular,
it can be written as

E: y2 = (x − a1)(x − a2)(x − a3)

with real branch points b1, b2, b3. Setting a′
1 := p and a′

2,3 := − 1
2p ± 1

2 i
√−Δ and

reversing the formulas mentioned above, we find a3 = 2p, a2 = p + 2
√

2p2 + q and
a1 = p − 2

√
2p2 + q . It remains to note that we have interchanged a2 and a3 in the

statement of the theorem to conform to our convention that a2 < a3. �

Example 1 p = 0 and q = 1, hence a3 = 0, a2 = 2, a1 = −2 and

∫ ∞

0

dx′√
x′(x′2 + 1)

= 2
∫ ∞

0

dx√
x(x2 − 4)

= 2
∫ 0

−2

dx√
x(x2 − 4)

= 2π

M(
√

4,
√

2)
= 2π

1.694426170 . . .
= 3.708149355 . . . .

The transformation boils down to x = x′ + 1
x′ . The period in this example is a factor√

2 smaller than

2
∫ 1

−1

dx√
1 − x4

= 2π

M(
√

2,1)
= 5.244115109 . . . ,

which is the length of the lemniscate r2 = cos(2θ), as calculated by Gauss. It is the
computation of the length of the lemniscate in 1799 which led Gauss to his theory of
the arithmetic–geometric mean. For more historical details see [5, 6].

3 Main theorem

The second proof in the section about the elliptic case using theta constants general-
izes to the hyperelliptic case. The main ingredients are again the doubling formula for
theta constants and the Thomae formulas, which relate theta constants to hyperelliptic
integrals and branch points.

3.1 Doubling formula and generalized arithmetic–geometric mean

We first define theta constants. We denote Siegel upper half space, consisting of all
symmetric g × g-matrices with positive definite imaginary part, by Hg .

Definition For τ ∈ Hg and β ∈ (Z/2Z)g = Fg

2 we define the theta constant

ϑβ(τ) :=
∑

m∈Zg

exp
(
πimT τm + πimT β

)
.
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Our ϑβ(τ) is traditionally denoted by ϑ
[ 0

1
2 β

]
(τ,0) (see [18, p. 123] or [13]). Note

that ϑβ(iΩ) is real if Ω is. Note also that ϑβ(2nτ ) → 1 as n → ∞.
Now we can state the doubling formula for (even) theta constants.

Theorem 3 For τ ∈ Hg and β ∈ (Z/2Z)g = Fg

2 we have

ϑ2
β(2τ) = 1

2g

∑
γ∈Fg

2

ϑγ (τ)ϑβ+γ (τ ).

Proof This is a special case of Theorem 2 in [13, p. 139]. �

From this we deduce the following definition of the generalized algebraic–
geometric mean for a 2g-tuple of positive real numbers. More precisely, we will de-
fine the generalized agm of a positive function v : V → R+ where V is a vector space
of dimension g over F2. We set v0 := v and

vn+1(β) := 1

2g

∑
γ∈V

√
vn(γ )vn(β + γ ).

We can view vn as a sequence of functions on V or as a 2g-tuple of sequences vn(β),
one for each β ∈ V . In the next section (see Theorems 6 and 7) we will prove that
these 2g sequences converge quadratically to a common limit. Equivalently, the se-
quence vn converges quadratically to a constant function on V .

Definition The generalized arithmetic–geometric mean M(v) of v = v0 is defined
as the common limit of the 2g defining sequences vn(β).

Remark 1 This generalized arithmetic–geometric mean was also considered in [8]
and [9] where in particular the behavior for complex arguments was studied. Note
that for g ≥ 3 the generalized agm depends on the parametrization of the 2g-tuple.
More precisely, if σ is a permutation of V , then in general one has M(v) �= M(v ◦σ).

An important special case is V = Fg

2 and v(β) = ϑ2
β(τ ) for fixed τ ∈ Hg . Recall

that ϑβ(τ) is real, since Ω ∈ Rg×g , hence ϑ2
β(τ ) ≥ 0. In fact, the Thomae formulas

below imply that ϑβ(τ) �= 0, hence ϑ2
β(τ ) > 0.

Lemma 1 Fix τ ∈ Hg and set v(β) := ϑ2
β(τ ) for β ∈ Fg

2 . Then M(v) = 1.

Proof By the doubling formula and the definition of the generalized agm we find that
M(v) = M(β �→ ϑ2

β(2nτ )) for n = 1,2,3, . . . . It remains to note that ϑ2
β(2nτ ) → 1

as n → ∞. �
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3.2 Thomae formulas

The Thomae formulas are the second main ingredient for the relation between hyper-
elliptic integrals and the generalized agm. Let

y2 = (x − a1) · · · (x − ad)

be a real hyperelliptic curve satisfying a1 < · · · < ad . We have d = 2g + 1 or d =
2g + 2, where g is the genus. In the introduction we defined period matrices A, B

and iΩ .
We say that S ⊆ {1, . . . ,2g + 2} is an A-subset if S is a union of subsets of the

form {2j − 1,2j}. For an A-subset S we set

βj := #S ∩ {2j, . . . ,2g + 1} mod 2

for j = 1, . . . , g.
Let A be the set of A-subsets modulo A := Ac := {1, . . . ,2g + 2} \ S. This set is

a vector space of dimension g over F2 with the symmetric difference “◦” as addition
and the empty set as zero element. The map

β = (β1, . . . , βg): A → Fg

2

is a vector space isomorphism. The standard basis of Fg

2 corresponds to the basis
{1,2}, . . . , {2g − 1,2g} of A.

Let w : A → R+ be a family of positive real numbers parametrized by A. Note
that M(w) is the common limit of the sequences (wn(S))∞n=0 defined by the iteration

wn+1(S) := 1

2g

∑
T ∈A

√
wn(T )wn(S ◦ T )

and w0 := w.

Theorem 4 (Thomae) Let τ = iΩ be the period matrix of the hyperelliptic curve

y2 = (x − a1) · · · (x − a2g+2)

satisfying a1 < · · · < a2g+2 < ∞. For any subset T ⊆ {1, . . . ,2g + 2}, we set

ΠT :=
∏
j>k,
j,k∈T

(aj − ak) > 0.

If S is an A-subset, then we have the Thomae formula

πgϑ2
β(S)(τ ) = ∣∣det(A)

∣∣√ΠS◦UΠS◦G,

where U = {1,3, . . . ,2g + 1} and G = {2,4, . . . ,2g + 2} denote the subsets of odd
and even elements, respectively.
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Proof This was proven by Thomae in 1870 (see [21]). For a modern account, see

[10, p. 46] and [19, pp. 120/121]. Note that our
[ 0

1
2 β(S)

]
equals Mumford’s ηS (see

[19, p. 88]), hence ϑβ(S) = ϑ[ηS].
�

3.3 Main theorem

After these preliminaries, the main theorem follows easily.

Theorem 5 For a real hyperelliptic curve y2 = (x − a1) · · · (x − a2g+2) we have

∣∣det(A)
∣∣ = πg

M(S �→ √
ΠS◦UΠS◦G)

.

Proof This follows from the Thomae formulas, the doubling formula for ϑ and the
fact that ϑβ(2nτ ) → 1 as n → ∞:

πg = πg · M(
β �→ ϑ2

β(τ )
)

= M
(
S �→ πgϑ2

β(S)(τ )
)

= ∣∣det(A)
∣∣ · M(

S �→ √
ΠS◦UΠS◦G

)
. �

Remark 2 In the examples in the introduction we have seen how to translate this to
the case d = 2g + 1.

For completeness, we compute the sign of the determinants of A and B .

Proposition 1 det(A) and det(B) have sign (−1)
g/2�. In particular, det(Ω) > 0.

Proof We have det(B) = det((−1)j+1I2j,k) = (−1)
g/2� det(I2j,k), where j and k

run from 1 through g. It remains to note that the Vandermonde determinant

det(I2j−1,k)1≤j,k≤g = det

(∫ a2j

xj =a2j−1

xk−1
j dxj√|f (xj )|

)
1≤j,k≤g

=
∫

D

∏
1≤k<j≤g

(xj − xk)dx1 · · · dxg√|f (x1) · · ·f (xg)|
,

where D := ∏g

j=1[a2j , a2j+1], is positive. The computation of the sign of det(A) is
analogous. �

4 Numerical example

We consider the curve y2 = (x − a1) · · · (x − a7) with aj := j2 for j = 1, . . . ,7 of
genus 3. Using Maple (see the Appendix) with 10 digits accuracy we find
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A ≈
⎛
⎝0.001835389715 −0.003233181628 0.001610591063

0.004924225388 −0.03980336598 0.04745548964
0.01523975237 −.5102224404 1.421915838

⎞
⎠

and

Ω ≈
⎛
⎝1.710058007 0.879176705 0.476414775

0.879176703 1.372004622 0.565962196
0.476414773 0.565962195 1.035264177

⎞
⎠ .

Note that Ω is indeed symmetric (up to 8 digits) and positive definite! Computing
with 20 digits accuracy yields

det(A) ≈ −0.000042207216090372187073.

We will now check that the generalized agm gives the same numerical result
for det(A). There are 16 A-subsets S ⊆ {1, . . . ,8} which give rise to 8 classes [S] ∈
V ∼= F3

2. We compute w([S]) := √
ΠS◦UΠS◦G for each [S] ∈ V . The classes of

S1 := {1,2}, S2 := {3,4} and S3 := {5,6} form a basis of V ; this way we identify
V with F3

2. As before, let ai,j,k = (ai − aj )(ai − ak)(ak − a�) and let ai,j,k,� denote
the product of the six differences ai − aj , . . . , ak − a�. We find

w(0,0,0) := √
a7,5,3,1 · a6,4,2 = 737280

√
2,

w(1,0,0) := √
a7,5,3,2 · a6,4,1 = 7372800

√
210,

w(0,1,0) := √
a7,5,4,1 · a6,3,2 = 17694720

√
15,

w(0,0,1) := √
a7,6,3,1 · a5,4,2 = 13271040

√
14,

w(1,1,0) := √
a7,5,4,2 · a6,3,1 = 8847360

√
105,

w(1,0,1) := √
a7,6,3,2 · a5,4,1 = 26542080

√
5,

w(0,1,1) := √
a7,6,4,1 · a5,3,2 = 2949120

√
210,

w(1,1,1) := √
a7,6,4,2 · a5,3,1 = 23592960

√
6.

Four iterations of the agm-algorithm yield twenty-one correct digits:

π3

M(w)
= π3

734620.274739527460876
= 0.0000422072160903721870729,

which does indeed agree with the direct computation of |det(A)|!

5 Quadratic convergence of the generalized agm

In this final section we prove the quadratic convergence of the generalized agm. First
we prove convergence.
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Theorem 6 The sequence vn converges to a constant function on V . Equivalently,
the 2g sequences vn(β) converge to a common limit.

Proof For notational convenience we consider the case g = 3; the general case is
completely analogous. We have 8 sequences an, . . . , hn, where

an+1 = 1

8
(an + · · · + hn),

bn+1 = 1

4

(√
anbn + · · · + √

gnhn

)
,

...

We claim that an ≥ bn, . . . , hn for n ≥ 1. By symmetry, it suffices to check that
an+1 ≥ bn+1 for n ≥ 0. Applying 1

2 (x + y) ≥ √
xy to x = 1

4 (an + cn + en + gn)

and y = 1
4 (bn + dn + fn + hn) we find that

an+1 ≥ 1

4

√
(an + cn + en + gn)(bn + dn + fn + hn).

Set v := 1
2 (

√
an,

√
cn,

√
en,

√
gn) and w := 1

2 (
√

bn,
√

dn,
√

fn,
√

hn). Then

bn+1 = v · w ≤ ‖v‖ · ‖w‖ = 1

4

√
(an + cn + en + gn)(bn + dn + fn + hn) ≤ an+1.

We find that an is a decreasing, bounded sequence. Hence an converges to some num-
ber α. Similarly, mn := min(bn, . . . , hn) is an increasing bounded sequence, hence it
converges to some number μ ≤ α.

Take any ε > 0. Then α ≤ an < α + ε for all n � 0. This implies

α ≤ an+1 = 1

8
(an + · · · + hn) <

7

8
(α + ε) + 1

8
mn,

whence mn > α − 7ε for all n � 0. Since ε > 0 is arbitrary, we find that μ = α. This
implies that all sequences an, . . . , hn converge to α. �

We continue using the notation mn := min(an, bn, cn, . . .).

Theorem 7 Convergence is quadratic in the following sense: |an+1 − mn+1| ≤
C|an − mn|2 for some constant C not depending on n.

Proof We use the idea of the proof of [3, Theorem 8.5]. For notational convenience
we take g = 2, the general case being analogous. We consider the Taylor series of
bn+1 = 1

2 (
√

anbn + √
cndn) near (�, �, �, �), where � is the common limit of the se-

quences an, . . . , dn. Note that ∂bn+1
∂an

= · · · = ∂bn+1
∂dn

= 1
4 in (�, �, �, �), whereas the
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Hessian equals

H(bn+1) = 1

8�

⎛
⎜⎜⎝

−1 1 0 0
1 −1 0 0
0 0 −1 1
0 0 1 −1

⎞
⎟⎟⎠ .

Using (x − �)2 − 2(x − �)(y − �) + (y − �)2 = (x − y)2 we compute the Taylor
expansion of bn+1 around (�, . . . , �) to find

bn+1 = � + 1

4
(an − �) + · · · + 1

4
(dn − �) − 1

16�

(
(an − bn)

2 + (cn − dn)
2)

+ O
(|an − mn|3

)
.

Hence

an+1 − bn+1 = 1

16�

(
(an − bn)

2 + (cn − dn)
2) + O

(|an − mn|3
)
.

This implies an+1 − bn+1 = O(|an − mn|2) and analogously for an+1 − cn+1 and
an+1 − dn+1. The claim follows. �

Remark 3 Convergence is also quadratic in the following sense: |an+1 − �| =
O(|an − �|2) and |mn+1 − �| = O(|mn − �|2), where � is the common limit. This
follows from the previous theorem, using the estimates � − mn ≤ 2g(an − �) and
an − � < 2g(� − mn) for n � 0. We leave the details to the reader.

Remark 4 It is conceivable that the convergence of �−bn, �−cn, . . . is not quadratic,
since by coincidence � − bn could be arbitrarily small (even zero) compared to � −
bn+1. It is not clear to us if this can happen for infinitely many n. Also, the two
extreme sequences an and mn are monotonous for n ≥ 1, but it is not clear whether
the sequences bn, cn, . . . are monotonous after finitely many steps.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

Appendix: Maple script

The integrals above were computed using Maple. The following script computes 500
digits of

∫ 4
1

dx√|(x−1)(x−4)(x−9)(x−16)| in about 2 minutes, whereas the agm yields about
30,000 digits in less than 2 seconds!

Digits:=100: with(student):
f:=x->1/sqrt(abs((x-1)*(x-4)*(x-9)*(x-16))):
p:=Int(f(x),x=1..4, method=_Gquad):
q:=simplify(changevar(x=1+u^2,p,u)):
r:=simplify(changevar(u=sqrt(3)-v^2,q,v)):
evalf(r);
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